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Abstract—Simulation of three-dimensional transient eddy cur-
rent problems is important to numerous applications. The Finite
Element Method (FEM) has proven be to be powerful numerical
technique for solving the Partial Differential Equations (PDE)
describing eddy currents. In order to solve the PDE, boundary
conditions must be provided, and in many applications the
boundary conditions are not known explicitly but can be provided
by a Resistor-Inductor-Capacitor (RLC) circuit model. The
emphasis of this paper is on an efficient and exact coupling
of the RLC network equations with the FEM equations. The
coupling is based on an exact linear algebra identity known as the
Sherman-Morrison-Woodbury (SMW) formula. One advantage
of this approach is that the FEM matrices are not modified.
This is important if a fast “black-box” solver is available for the
FEM matrices, these solvers typically require that the matrices
have certain mathematical properties and these properties are not
modified by the SMW approach. A second advantage is that the
SMW approach is valid for an arbitrary number of independent
external circuits.

Index Terms—Eddy currents, finite element, circuits, pulse
power.

I. INTRODUCTION

SIMULATION of three-dimensional transient eddy current
problems is important to numerous applications. The particular
class of eddy current problems considered here are problems
that are driven by a pulsed power supply such as a capacitor
bank. Example applications of interest include electromagnetic
metal forming, in which eddy currents are used to drive sheet
metal into a mold at high velocity; equation of state research,
in which pulse magnetic fields are used to compress materials
to high pressure; and railguns, in which pulsed magnetic fields
are used to accelerate a projectile. In each of these applications
the complete problem can be decomposed into a complex
dynamic load and a pulsed power supply. The power supply
consists of, for example, a collection of capacitors, cables,
snubbers, and switches. The power supply is modeled by
a Resistor-Inductor-Capacitor (RLC) network, i.e. a lumped
parameter model. On the other hand the load is modeled by a
three-dimensional Partial Differential Equation (PDE), and this
PDE is solved using the Finite Element Method (FEM). For a
trivial time-independent load, it may be possible to compute
the resistance and inductance of the load using FEM and
then use these values in an RLC model of the entire system.
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But the focus here is on non-trivial loads, meaning that the
load is modified as power is being delivered, either through
deformation or melting or both. The emphasis of this paper is
on an exact and efficient computational algorithm for coupling
the external RLC circuit equations with the FEM equations for
this latter case.

An early approach for coupling RLC circuits with FEM
equations was an iterative scheme in which the circuit equa-
tions and the FEM equations were updated in an operator split
(or leapfrog) manner [1]. This approach is appealing, however
it is not robust, and in fact it can be shown to be unstable. This
is discussed more in Section II below. A more robust approach
is to simultaneously solve the circuit equations with the FEM
equations, this results in a large asymmetric indefinite system
of equations to be solved at every time step [2] [3] [4] [5].
This may be satisfactory for modestly sized problems, but it
is intractable for problems involving millions of degrees of
freedom. Modern FEM programs for transient eddy current
simulation use very efficient so-called “fast solvers”, such
as multigrid, to compute the fields. However in order to
apply these fast methods the FEM matrix must have certain
properties, and these properties are destroyed by the simplistic
direct addition of the circuit equations.

II. FULLY COUPLED FORMULATION

A. FEM Disrectization of the Eddy Current Equations

As mentioned in the Introduction the overarching approach
is to decompose the problem into the power supply, modeled
as one or more RLC circuits, and the load, modeled as a PDE.
This is illustrated in 1. The key coupling variables are the port
current and the port voltage. The RLC circuit equations will
be solved using Modified Nodal Analysis. In MNA, the nodal
voltages are computed given the port currents, i.e. current is
the input to MNA and voltage is the output. The load PDE is
solved using the H(curl)-conforming electric field FEM, and
in this formulation the port current is computed given the port
voltage, i.e. voltage is the input to the model and current is the
output. Clearly, for a self consistent coupling , the two models
must agree on the port current and the port voltage.

The Ampere-Faraday equations are a pair of coupled first-
order PDE’s for electric and magnetic fields. The well-
known eddy current approximation (i.e. low-frequency, good-
conductor) is used. These equations can be expressed in terms



Fig. 1. Decomposition of the problem into RLC circuits and a load. Each
circuit is coupled to the load via a port, with a port voltage and a port current.
The load is modeled using FEM. A RLC circuit node is associated with a set
of faces of the finite element mesh, denoted in the illustration as Γi.

of the electric field ~E and the magnetic flux density ~B as

~∇× 1
µ
~B = σ~E + ~Js (1)

~∇×~E = −∂~B
∂t

(2)

where µ is the magnetic permeability, σ is the electric con-
ductivity, and ~Js is a source term. There are also divergence
equations for both ~B and ~E, but since these area automatically
satisfied by H(curl)-conforming FEM they need not be dis-
cussed further [6]. The source term ~Js represents the current
generated by an applied voltage,

~Js = −σ∇Φ (3)
∇ ·∇Φ = 0, ; Φ = gi on Γi, (4)

where gi is the voltage applied to surface Γi, as shown in
Figure 1. The fields ~B and ~E are approximated in basis function
expansions

~B ≈
n

∑
i=1

bi~W 2
i

~E ≈
m

∑
i=1

ei~W 1
i

Φ ≈
k

∑
i=1

φi~W 0
i

where W 2 denotes a H(div)-conforming basis function, W 1

denotes a H(curl)-conforming basis function, and W 0 denotes
the standard scalar H1-conforming basis function. For the case
of lowest order basis functions, k, m, and n denote the number
of mesh nodes, edges, and faces, respectively. The Galerkin
finite element procedure, combined with backward Euler time

integration, results in the fully discrete system of equations,

Svn+1 = gn (5)
(M+∆tY)en+1 = (K)T bn−∆tDvn+1 (6)

bn+1 = bn−∆tKen+1 (7)
in+1 = Ren+1 +Pφn+1 (8)

The derivation of this fully discrete system of equations is
given in [7]. The vectors φ, e, and b are the degrees-of-freedom
for the scalar potential, electric field, and magnetic flux
density, respectively. Note that e is the solenoidal component
of the electric field only. The vector g is the port voltages.
The matrix S is the k× k H1 Laplace matrix, the matrices M
and Y are the m×m H(curl) mass and stiffness matrices, the
matrix D is the m×k gradient matrix mapping H1 to H(curl),
and the matrix K is the m× n curl matrix mapping H(curl)
to H(div). Finally, in+1 is the vector of port currents, and the
matrices R and P represent the surface integral of ~J · n over
each port surface Γi.

As discussed in [6] this finite element algorithm is second
order accurate in space, first order accurate in time, provably
stable and divergence preserving. In the Introduction it was
mentioned that for the problems of interest the load is dy-
namic, due to motion or heating or both. Coupling of the above
eddy current equations with the equations of heat transfer
and hydrodynamics is outlined in [7], for example, and is
not discussed here. Instead, for brevity the matrices are just
considered to be functions of time, with the specific time-
dependence not essential to the discussion.

B. Modified Nodal Analysis of the RLC equations

Modified Nodal Analysis (MNA) [8] is a common approach
for simulation of RLC networks. The approach is based on
Kirchhoff’s Current Law: the sum of all currents entering a
node is zero. The Laplace-domain nodal admittance system of
equations can be written compactly as

(G+ sC)x = w. (9)

The matrix G contains the admittance of resistive elements,
with Gii being the sum of all admittances connected to node i
and Gi j being the admittance between nodes i and j. Likewise,
the matrix C contains the admittances for inductive and
capacitive elements. The vector x represents nodal voltages,
current flowing through voltage sources, and current flowing
through inductors. The vector w contains the values of the
independent current sources and independent voltage sources.
An initial vector x0 must of course be supplied to completely
specify the problem. The dimension of the system of equations
is (number of circuit nodes) + (number of voltage sources) +
(number of inductors). Converting to the time-domain gives

C
dx
dt

= w−Gx. (10)

Mathematicians refer to equations of the form of (10) as
Differential-Algebraic system of Equations (DAE). It can be
shown that for decent circuits (no loops of inductors, etc.) this



DAE has index 1 meaning that the solution exists and simple
numerical methods can be employed. Note that in general the
matrix C can be singular even for decent circuits therefore
implicit methods must be used. The simplest such method is
backward Euler,

(C+∆tG)xn+1 = Cxn +∆twn+1 (11)

and for decent circuits the matrix (C+∆tG) is non-singular.
While high-performance SPICE solvers use adaptive higher-
order backward difference methods, backward Euler is used
here to be compatible with the FEM equations discussed
above.

C. Coupling the MNA equations with the FEM equations

Let’s summarize all of these equations, and also define
some new matrices A = (C+∆tG) and Z = (M+∆tS) for
convenience, giving

Axn+1 = Cxn +∆tTin+1 +∆twn+1

Sφn+1 = Qxn+1

Zen+1 = (K)T bn−∆tDφn+1

in+1 = Pφn+1 +Ren+1

bn+1 = bn−∆tKen+1

The above system of equations can be written in matrix form
as 

A 0 0 −∆tT 0
−Q S 0 0 0

0 ∆tD Z 0 0
0 −P −R 1 0
0 0 −∆tK 0 1




x
φ

e
i
b


n+1

=


C 0 0 0 0
0 0 0 0 0
0 0 0 0 (K)T

0 0 0 0 0
0 0 0 0 1




x
φ

e
i
b


n

+


∆tw

0
0
0
0


This is a fully self-consistent implicit system of equations
for the tightly-coupled coupling of circuit MNA equations
with the eddy current FEM equations. Note that matrices T
and Q are the coupling matrices. The matrix T maps eddy
current port currents to RLC circuit port currents, and the
matrix Q maps RLC circuit node voltages to eddy current
port voltages. These are extremely sparse matrices consisting
of 0’s and 1’s only, with the 1’s denoting the coupling. Note
that the large matrix does not have nice properties, it is not
symmetric and not definite. In the next two sections two
different approaches for simplifying the solution are examined,
the operator splitting approach which is unstable, and the
Sherman-Morrison-Woodbury approach which is stable.

III. OPERATOR SPLITTING

The operator splitting approach is conceptually straightfor-
ward, the T matrix discussed above is simply moved from the
left hand side of the equation to the right hand side of the
equation. This means that the the RLC circuit state xn+1 is

computed using the port currents in, i.e.the port currents are
lagged in time,

A 0 0 0 0
−Q S 0 0 0

0 ∆tD Z 0 0
0 −P −R 1 0
0 0 −∆tK 0 1




x
φ

e
i
b


n+1

=


C 0 0 ∆tT 0
0 0 0 0 0
0 0 0 0 (K)T

0 0 0 0 0
0 0 0 0 1




x
φ

e
i
b


n

+


∆tw

0
0
0
0


Now, the large matrix on the left hand side is block lower
triangular and can be solved quite simply as follows:

solve Axk+1 = Cxk + ...
solve Sφk+1 = Qxk+1
solve Zek+1 = −∆tDφk+1 + ...
compute ik+1 = Pφk+1 +Rek+1
compute bk+1 = bk−∆tKek+1

(12)

Each of these individual solves can be performed using op-
timal algorithms, i.e. multigrid, hence this approach is quite
appealing. Unfortunately the method can go unstable, in fact
instabilities have been observed even in the limit as ∆t→ 0.

IV. SHERMAN-MORRISON-WOODBURY FORMULA

For simplicity denote the large fully coupled system of
equations as

Ā =


A 0 0 −∆tT 0
−Q S 0 0 0

0 ∆tD Z 0 0
0 −P −R 1 0
0 0 −∆tK 0 1

 (13)

and denote the same matrix, but without the T submatrix, as

M̄ =


A 0 0 0 0
−Q S 0 0 0

0 ∆tD Z 0 0
0 −P −R 1 0
0 0 −∆tK 0 1

 (14)

Two new vectors z and y are defined as

z =


x
φ

e
i
b


n+1

(15)

y =


C 0 0 ∆tT 0
0 0 0 0 0
0 0 0 0 (K)T

0 0 0 0 0
0 0 0 0 1




x
φ

e
i
b


n

+


∆tw

0
0
0
0

 . (16)



The large system of equations can then be written compactly
as Āz = y. The matrices Ā and M̄ are related by the low rank
modification

Ā = M+uvT (17)

where

u =


−∆tT

0
0
0

 v =


0
0
0
1

 (18)

The vectors u,v have one column for each port. Therefore the
matrix uvT , which is the difference between the big global
system matrix Ā and the preconditioner M̄, is of rank number-
of-ports, which will be denoted as np.

Consider the Sherman-Morrison-Woodbury (SMW) formula(
M+uvT )−1 = M−1−M−1u

(
1+vT M−1u

)−1 vT M−1 (19)

This formula is exact. The SMW formula is applied as follows,

z = Ā−1y
=

(
M+uvT )−1 y

= M−1y−M−1u
(
1+vT M−1u

)−1 vT M−1y
= g− fαvT g

where the vectors g and g are defined as solutions of

Mg = y
Mf = u

α =
(
1+vT f

)−1

Note that any solve involving M is straightforward, it is just
the step-by-step sequential solution (12) outlined above. Note
that if there are np ports, then Mf = u represents np separate
solves. Note that the matrix α =

(
1+vT f

)
is a tiny np× np

matrix that is simply inverted. For the case of just one port,
there are just two solves. The solve for g is is an update of
the MNA+FEM equations, taking into account the previous
MNA+FEM state (i.e. the y vector) but ignoring the effect of
the current i on the circuit. The solve for f is an update of the
MNA+FEM equations using a unit current i = 1 supplied to the
circuit equations, but ignoring the previous MNA+FEM state
and ignoring any independent voltage and current sources, i.e.
independent of the y vector. This latter solve gives the impulse
response of the MNA+FEM system of equations. Note that
if the FEM problem is such that there is no motion and no
change of material properties, than this latter solve need only
be computed once, since the impulse is response is then time-
invariant. To summarize, the procedure is

solve Mf = u using (12)
solve Mg = y using (12)
compute α =

(
1+vT f

)−1

compute z = g− fαvT g

(20)

The vector z is the final solution of the fully coupled
MNA+FEM equations. Note that the matrix M is the same
for each solve, so it is most computationally efficient to

solve M(f,g) = (u,y) if possible. For time-independent loads,
the impulse response vector f need only be computed once.
For time dependent loads, all matrices and vectors need to
computed at each time step.

V. CONCLUSIONS

Many important low-frequency electromagnetic problems
can be analyzed by decomposing the problem into a power
supply coupled to a complicated load. The power supply is
modeled as a collection of RLC circuits, and the numerical
solution of the circuit equations is formulated using Modified
Nodal Analysis (MNA). The load is modeled as a Partial
Differential Equation, i.e. the Ampere-Faraday equations of
low-frequency electromagnetics, and the numerical solution
of this PDE is formulated using the Finite Element Method
(FEM). Both the MNA equations and the FEM equations are
integrated in time using backward Euler. The MNA equations
are coupled with the FEM equations by matching port voltages
and currents at each port. For stability, the MNA equations
and the FEM equations must be tightly-coupled, i.e. solved
simultaneously. A brute-force assembly of the MNA+FEM
equations results in a large, asymmetric, indefinite system
of equations that is difficult to solve. In this paper a novel
method based on the Sherman-Morrison-Woodbury formula
is developed. The Sherman-Morrison-Woodbury formula is
an exact linear algebra identity that relates the solution of
a system of equations Ax = b to the solution of a similar
set of equations Mx = b, where A and M differ by a rank np
matrix. In our case, np is the number of external RLC circuits.
The key advantage of this approach is that the FEM matrices
are not modified, hence fast algorithms such as multigrid can
be used. A second advantage is that an arbitrary number of
external circuits can be coupled with the FEM equations.
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